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Abstract

Process measurements are of vital importance for monitoring and control of industrial plants. When we consider offshore oil
production platforms, wells that require gas-lift technology to yield oil production from low pressure oil reservoirs can become un-
stable under some conditions. This undesirable phenomenon is usually called slugging flow, and can be identified by an oscillatory
behavior of the downhole pressure measurement. Given the importance of this measurement and the unreliability of the related
sensor, this work aims at designing data-driven soft-sensors for downhole pressure estimation in two contexts: one for speeding up
first-principle model simulation of a vertical riser model; and another for estimating the downhole pressure using real-world data
from an oil well from Petrobras based only on topside platform measurements. Both tasks are tackled by employing Echo State
Networks (ESN) as an efficient technique for training Recurrent Neural Networks. We show that a single ESN is capable of robustly
modeling both the slugging flow behavior and a steady state based only on a square wave input signal representing the production
choke opening in the vertical riser. Besides, we compare the performance of a standard network to the performance of a multiple
timescale hierarchical architecture in the second task and show that the latter architecture performs better in modeling both large
irregular transients and more commonly occurring small oscillations.
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1. Introduction
1 In order to achieve enhanced oil production in offshore oil

wells, the well’s downhole conditions must be monitored. For
that, permanent downhole gauge sensors (PDG) are usually in-
stalled at the bottom of the well providing measurements for
temperature and pressure. The downhole pressure measured is
one of the most important variables for monitoring, optimiza-
tion and control of oil well production, being essential in as-
sessing the dynamics of the oil well.

One important phenomenon observed in pipelines and oil
wells corresponds to high oscillatory flow or slugging flow. This
is usually the case for gas-lift oil wells, which employ the gas-
lift technique in order to extract the oil from deepwater or low
pressure wells. The artificially injected gas diminishes the den-
sity of the well fluid, which, in turn, makes possible its ex-
traction with the created difference in pressure. Stabilization
techniques which tackle these oscillatory behaviors in multi-
phase flows are necessary and have been designed by experts in
academia and industry [25, 19, 29, 32, 14, 12]. These methods
are usually based on the stabilization of the downhole pressure
through choke actuators on the gas-lift flow rate and the well
production. Unfortunately, PDG sensors, as they are installed
in hazardous environments, have a prohibitive cost for main-
tenance or replacement [13], and also their premature failure
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is not uncommon. Additionally, perturbations and noise can
affect the PDG sensor measurements, making it an unreliable
information source.

Given the importance of measuring or estimating the down-
hole pressure and the unreliability of the PDG sensor which
measures this pressure, there have been several works which
seek to create models that can estimate the downhole pressure
based on other topside measurements. These predictive mod-
els, usually called soft-sensors, are important for quality con-
trol and production safety and have been extensively developed
in the past decades [34]. Some of them use knowledge of the
oil well physics [1] to design a nonlinear observer for the states
of the multiphase flow in order to estimate the downhole pres-
sure, while others are based on black-box system identification
approaches [33, 31]. While the first approach can take advan-
tage of the a priori knowledge for a refined analysis and more
advanced control schemes [12], the latter approach is quicker,
does not require extensive modeling, being well suited to iden-
tify unknown models. The current work follows the latter ap-
proach and assumes hardly any a priori model knowledge.

Much of the literature in system identification relies on the
use of NARMAX models [8] or feedforward artificial neural
networks (ANNs) with tapped delayed lines at the input layer
[33] to account for dynamic behaviors or temporal processing.
Although it is possible to introduce dynamics into the model us-
ing a time-window of previous inputs, a more interesting gen-
eral way is to use Recurrent Neural Networks (RNNs) as uni-
versal approximators for dynamical systems [17]. However,
training RNNs is not straightforward since gradient descent on
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the cost function, implemented as the backpropagation-though-
time (BPTT) technique [41], has drawbacks which include a
slow training process, no global convergence guarantee, pos-
sibility of bifurcations and problem of the vanishing gradient
[20]. It also requires substantial expert practice to do it cor-
rectly.

RNNs can provide a type of state-dependent computation
much like cortical functioning in the brain [10], where the tra-
jectory of a high-dimensional dynamical system reflects both
the current input as well as previously received input stimuli.
Reservoir Computing (RC) [38] is a term recently coined to
designate this paradigm of computation based on transients of
a fixed dynamical system (such as an RNN). Most common RC
models are the Echo State Networks (ESNs) [23] when analog
neurons are used and Liquid State Machines (LSMs) [28] when
spiking neurons are considered as dynamical reservoirs. In RC,
the network (see Fig. 1) should be composed of two main parts,
a recurrent high-dimensional pool of neurons, with randomly
generated and fixed synaptic weights, called reservoir 2, and a
linear adaptive readout output layer which projects the reser-
voir states to the actual system’s output. As only the output
layer needs to be trained, usually via linear regression methods,
the training is simplified and global convergence guaranteed
(unlike in BPTT). The reservoir can be viewed as a dynamic
nonlinear kernel, projecting the input to a high-dimensional dy-
namic space, in which linear regression or classification can be
more easily performed. Numerous applications, relying on the
powerful temporal processing capabilities of RC, have been de-
rived: navigation and localization of mobile robots in partially
observable environments [5], periodic signal generation with
nanophotonic reservoir computing [15], hierarchical control of
robotic arms [40], speech recognition [35], etc.

This work builds on previous results [3, 2] to elaborate on
an unified RC-based approach for estimation of the downhole
pressure in oil wells. Two main cases are addressed in this pa-
per: system identification of a simulated vertical riser model
and the design of a soft-sensor for gas-lift oil wells using real-
world data. Both tasks are solved by using the same efficient
black-box RC-based architecture [23] for modeling the partic-
ular input-output mappings of the target dynamical nonlinear
system (i.e., the oil well). The motivation to use RC for build-
ing soft-sensors of downhole pressure is four-fold:

1. it can be applied to problems when the model is unknown
(most real-world processes can not be completely mod-
eled or a considerable modeling effort is needed) when
compared to an observer design approach;

2. RC allows the addition of new output units at the output
layer (using the same reservoir) which can be trained sep-
arately, without corrupting previously trained units, being
useful if additional output estimation units are required
with time;

3. inverse models can easily be built so that even a subset
of the input measurements can be predicted in case some

2The term reservoir is used to designate the randomly generated RNN in
RC throughout this paper, and is not related to reservoirs in oil and gas industry
unless explicitly stated.
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Fig. 1: Reservoir Computing (RC) network. The reservoir is a non-linear dy-
namical system usually composed of recurrent sigmoid units. Solid lines repre-
sent fixed, randomly generated connections, while dashed lines represent train-
able or adaptive weights.

sensors become faulty, ultimately improving overall per-
formance (as shown in [6] for a robotic task);

4. lastly, RC provides a quick and efficient training for RNNs
when compared to methods based on gradient descent.

The first task in this work is motivated by the fact that the
simulation of nonlinear process models in optimization tasks
usually requires a significant computational effort, especially
when the model is composed of many inter-related higher-order
components. Thus, the replacement of the relatively computa-
tionally expensive simulation by a trained RC network yields a
significant economy on execution time (as it will be shown in
Section 3). The second task tackles modeling dynamical non-
linear relationships from real-world oil well data obtained from
Petrobras in order to design a soft-sensor which estimates the
downhole pressure (given by the PDG sensor under ordinary
situations) based on measurements from the seabed production
platform.

This paper is organized as follows. Section 2 presents the
RC model used in the rest of this work: the Echo State Net-
work. The following section (Sec. 3) introduces the problem
and relevance of vertical riser modeling, the experimental setup
and corresponding results. Section 4 tackles the second task of
designing a soft-sensor for estimating the downhole pressure in
a gas-lift oil well. Conclusions and future work are drawn in
Section 5.

2. Reservoir Computing

2.1. ESN model

An ESN is composed of a discrete hyperbolic-tangent RNN,
the reservoir, and of a linear readout output layer which maps
the reservoir states to the actual output. Let ni, nr and no rep-
resent the number of input, reservoir and output units, respec-
tively, u[n] the ni-dimensional external input, x[n] the nr-dimensional
reservoir activation state, and y[n] the no-dimensional output
vector, at discrete time n. Then, the discrete time dynamics of
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the ESN is given by the state update equation:

x[n + 1] =(1 − α)x[n] + α f (Wr
rx[n] + Wr

iu[n]+
Wr

oy[n] + Wr
b), (1)

and by the output computed as:

y[n + 1] = g
(
Wo

r x[n + 1] + Wo
i u[n] + Wo

oy[n] + Wo
b

)
(2)

= g
(
Wout (x[n + 1],u[n], y[n], 1)

)
(3)

= g
(
Woutz[n + 1]

)
, (4)

where α is the leak rate [24, 30]; f (·) = tanh(·) is the hyperbolic
tangent activation function, commonly used for ESNs; g is a
post-processing activation function (in this paper, g is the iden-
tity function); Wout is the column-wise concatenation of Wo

r ,
Wo

i , Wo
o and Wo

b; and z[n + 1] = (x[n + 1],u[n], y[n], 1) is the
extended reservoir state, i.e., the concatenation of the state, the
previous input and output vectors and a bias term, respectively.

The matrices Wto
from represent the connection weights be-

tween the nodes of the complete network, where r, i, o, b de-
notes reservoir, input, output, and bias, respectively. All weight
matrices representing the connections to the reservoir, denoted
as Wr, are initialized randomly (represented by solid arrows in
Fig. 1), whereas all connections to the output layer, denoted as
Wo, are trained (represented by dashed arrows in Fig. 1). We
disregard the connections Wr

b and Wo
o. The non-trainable con-

nection matrices Wr
r,Wr

i are usually generated from a Gaussian
distribution N(0, 1) or a uniform discrete set {−1, 0, 1}. During
this random initialization, the matrix Wr

i is multiplied by the
parameter called input scaling υr

i (or υr
o for Wr

o).
The weights from the reservoir connection matrix Wr

r are
obtained randomly through a Normal distribution (N(0, 1)) and
then rescaled such that the resulting system is stable but still ex-
hibits rich dynamics. A general rule to create good reservoirs is
to set the reservoir weights such that the reservoir has the Echo
State Property (ESP) [21], i.e., a reservoir with fading mem-
ory. A common method used in the literature is to rescale Wr

r
such that its spectral radius ρ(Wr

r) < 1 [21]. Although it does
not guarantee the ESP, in practice it has been empirically ob-
served that this criterium works well and often produces analog
sigmoid ESNs with ESP for any input. It is important to note
that spectral radius closer to unity as well as larger input scaling
makes the reservoir more non-linear, which has a deterioration
impact on the memory capacity as side-effect [37]. This scaling
of matrices is important because it influences greatly the reser-
voir dynamics [38] and, in this way, must be chosen according
to the task at hand empirically, analyzing the behavior of the
reservoir states over time, or by grid searching.

Most temporal learning tasks require that the timescale present
in the reservoir match the timescales present in the input signal
as well as in the task space. This matching can be done by the
use of a leak rate (α ∈ (0, 1]) and/or by resampling the input
signal. For instance, low leak rates yield reservoirs with more
memory which can hold the previous stimuli for longer time
spans. When more complex learning tasks are required, which
need unbounded-time memory and oscillatory dynamics (as the

Fig. 2: Riser setup.

task in Section 3), then feedback connections from the output
layer to the reservoir layer (Wr

oy[n]) are essential. The presence
of feedback connections allows the reservoir to enter in a free
run mode after training: the predicted output at timestep n will
be used as input to the reservoir at the next timestep. During
the training stage, instead, teacher-forcing is used: the target
output from the training samples is fed back to the reservoir.
Furthermore, stabilization of the system with output feedback
is a concern to be handled. That can be achieved by state noise
injection [21] or regularizing the readout output [43].

2.2. Training

Training the RC network means finding Wout in (2), that is,
the weights for readout output layer from Fig. 1. That is usually
done by linear regression methods on the reservoir states gen-
erated by simulating (1) with a given input signal u[n]. In this
work, we use Ridge Regression [9]. See Appendix A for more
details on the training process.

The learning of the RC network is a fast process without
local minima. Once trained, the resulting RC-based system can
be used for real-time operation on moderate hardware since the
computations are very fast (only matrix multiplications of small
matrices).

3. Vertical riser modeling

3.1. Introduction

In this first part, RC is employed for identifying a model
[11] which displays the complex phenomena involved in mul-
tiphase flow dynamics observed in vertical risers. A scheme of
the riser can be seen in Fig. 2. The model is based on first prin-
ciples of fluid dynamics to represent the oscillatory flow behav-
ior in risers, typically referred to as slugging flow. The oscilla-
tions arise from the accumulation of gas in elongated bubbles
that is formed below the bottom of the riser, as a consequence
of an obstruction to the gas flow. The pressure in the bubbles
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builds up with incoming of gas until reaching a critical pres-
sure, a condition that causes discharge of gas to the riser which
causes a turbulence in the multiphase flow. A detailed descrip-
tion of the model is given in Appendix B.

The challenge of identifying the vertical riser model from
[11] with a single network is that it presents two distinct re-
gions: one stable, and another area characterized by oscillations
(see Fig. 3(a)). The behavior of the target signal (the bottom
hole pressure) is qualitatively distinct in these two regions de-
pending on the value of the actuator input (the production choke
opening).

It has been shown that RC networks can model self-generating
attractor patterns such as the digit 8 in Cartesian coordinates
[43]; and central pattern generators with modulable amplitude,
and shift [42, 27]. The feedback connections for this type of
task are mandatory, as it requires a long-term (non-fading) mem-
ory sufficient to sustain either an oscillation or a constant value.
As far as the authors know, the simultaneous learning of oscil-
latory and stationary signals with a single RC network is first
reported here 3.

3.2. Experimental setup
The dataset used to train the RC network was generated in

Matlab by simulating the ordinary differential equations (ODEs)
of the vertical riser model described by [11] (see Appendix
B). The dataset consists of a desired single input-single out-
put relationship (u[n], ŷ[n]), where u[n] is the production choke
opening (actuator), while ŷ[n] corresponds to the bottom hole
pressure variable. The input u[n] can take values in (0, 1] and
y[n] from [3 ∗ 106, 17 ∗ 106] Pa approximately. We generated
n = 24, 000 seconds (about six and a half hours) of simulation
using the ODE equations to collect the pairs (u[n], ŷ[n]) using a
randomly created, squared-shaped, input signal u[n].

For parameter selection, we used grid search with a 9-fold
random cross-validation over the following set of parameters:
leak rate α, input scaling υr

i , spectral radius ρ(Wr
r) and the reg-

ularization parameter λ. Other parameters are configured ar-
bitrarily, such as the reservoir which has 400 neurons. It is
known that as the reservoir increases in its number of neuronal
units, and if accompanied by a properly regularized training
procedure to avoid overfitting, its performance gets better since
its memory capacity and processing power also increase. We
found that a 400 neuron reservoir was enough to achieve good
results, but the task could be achieved with smaller reservoirs
4. The remaining parameters are set according to Section 2.1,
that is, all weight matrices connected to the reservoir (Wr

i and
Wr

o) are randomly generated from a uniform distribution [−1, 1]
(which means a connection fraction of 1) and scaled according
to the values given by the input scaling υr

i and output scaling
υr

o (in our case, υr
i = υr

o). This means that the magnitude of the
influence of the input production choke opening on the reser-
voir is the same compared to the magnitude of the influence of

3This paper builds upon a previous conference publication [3].
4One can use a 30-unit reservoir for this task, but the probability of ran-

domly obtaining a rich dynamical reservoir (and consequently a good perfor-
mance) is lower.

the output bottom hole pressure (note that both signals are nor-
malized). Wr

b is set to zero since the experiments have shown
that this extra bias non-linearity did not help to improve perfor-
mance. Training the network (computing W̃out) is done apply-
ing equation (A.1). A test set of 2, 400 seconds (or 40 minutes)
was used to evaluate the trained network. The experiments were
implemented in Python using the Oger toolbox [39].

The optimal parameter configuration given by the afore-
mentioned procedure for the results shown in the next figures
are as follows: α = 0.1, υr

i = 0.35, ρ(Wr
r) = 1 and λ = 10−2.5 =

0.0032.

3.3. Results
Fig. 3(a) shows the estimations of the trained RC network

using a training dataset consisting of 20, 000 samples (one per
second), and a test dataset composed of 4, 000 samples (or 66.6
minutes). The first plot shows the input signal, i.e., the produc-
tion choke opening used to test the identified trained system.
The target and actual network outputs for the bottom hole pres-
sure are shown in the next plot in black and blue lines, respec-
tively. The red vertical line defines the timestep at which the
reservoir starts running in free-run mode: using its own output
predictions y[n] as feedback signals. Previous to that, the target
signal ŷ[n] from the samples is teacher-forced in order to set
the internal reservoir state to an appropriate state (i.e., ŷ[n] is
used in (1) in place of y[n]). It can be seen that after the red
vertical line, the network can adequately model the behavior of
the identified system: it was able to model both fixed point and
oscillatory regions using only a single network.

From these two plots, one can also note that these two be-
haviors or, also, the different operating points which y[n] can
achieve depending on the input signal u[n] fed to the network
are, actually, learned through shifting the operating point of the
reservoir with the input signal u[n]. This can be seen in the third
plot of Fig. 3(a), which shows the first three principal compo-
nents from applying Principal Component Analysis (PCA) on
the reservoir states. As the value u[n] changes, the operating
point of the reservoir is taken, for instance, from a fixed point
region to an oscillatory region between minutes 10 and 15. The
distinction between these dynamic regions is learned during the
training phase. Apart from the role of u[n] in the reservoir,
y[n], by being fed back to the reservoir, functions as reinforcing
memory for maintaining either the fixed point or the oscillatory
behavior. Both are very important for the final result. Fig. 3(b)
shows the prediction of the bottom hole pressure zoomed in
over an interval of 10 minutes.

The stability of the generated y[n] output signal is essential
for the identification task and can be achieved by using noise
injection during training [21] or finding the optimal regulariza-
tion parameter λ in ridge regression [43]. To test the hypothesis
of stability, two experiments were devised using the test data:
the first experiment consisted of adding a single large and in-
creasing perturbation during 6 seconds, whereas the second was
done by adding Gaussian noise to y[n] at each timestep. The re-
sults in Fig. 4(a) show the stability of the generated output in
response to two large perturbations during minutes 35 and 48.
The perturbations take place during a fixed point and oscillatory
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behavior, and are handled effectively by the RC network which
is able to bring back the output to the desired value or behavior.
In particular, during the oscillation, the perturbation affects the
reservoir states (Fig. 4(c)) such that the magnitude of the oscil-
lation is increased and not removed until the next change in the
input signal u[n]. Further experiments should also include the
improvement of this issue.

Fig. 4(b) shows the reservoir stability robustness to random
Gaussian noise on the output y[n], considering a standard devi-
ation of 10−2 for the normalized output signal in [0, 1]. Other
magnitude values of Gaussian noise were tested and the results
summarized in Fig. 4(d). The performance deteriorates only
from σnoise = 10−1 on.

As a comparison in terms of simulation time, we observed
that running a 200 unit (400 unit) trained RC network (in Python)
is circa 18 times (12 times) faster than running the ODE solver
(ode23tb function in Matlab) for the same number of time steps
and using the same computer.

4. Soft-sensor for downhole pressure estimation

4.1. Introduction

In the previous section, the RC network was trained with
simulation data in order to estimate the bottom hole pressure
only from the production choke opening as input signal. To
be able to sustain either a constant value or oscillations at the
output layer, output feedback connections to the reservoir layer
were essential. Now, in this section, we deal with noisy and
messy data originating from a real-world oil well from Petro-
bras to build RC-based soft-sensors [16]. The schematics of
the oil well can be seen in Fig. 6. The task here is to build a
soft-sensor which can infer the downhole pressure y(t) based
on a set of input sensor measurements u(t) coming only from
the more easily accessible platform location. Although feed-
back connections were not required, the task here is consider-
ably complex since the underlying process generates very non-
linear behaviors which change over time probably due to well
and oil reservoir changing conditions. Additionally, these sig-
nal behaviors present multiple timescales. Because of this, we
propose a hierarchical deep architecture with 3 hidden layers
called H-RC (Fig. 5). The first layer (Res.1) has multiple decou-
pled small reservoirs, each one having a different leak rate. This
layer yields a state space sensitive to signals working at differ-
ent timescales. A similar approach was shown in [7], where a
single reservoir with multiple leak rates for individual neurons
yielded better performance in robot localization tasks than us-
ing only one leak rate. The second layer (PCA) learns the prin-
cipal components of the previous Res.1 layer by finding a linear
projection from a high-dimensional reservoir space into a low
dimension orthogonal space. This is done by Principal Compo-
nent Analysis [26], which computes the eigenvectors of the co-
variance matrix with largest eigenvalues. The third hidden layer
(Res.2) is composed of reservoir units, representing a nonlinear
and temporal expansion on the previous PCA layer. The final
output layer (which estimates the downhole pressure y(t)) re-
ceives signals from Res.2 layer and optionally from Res.1 layer.

Fig. 5: Proposed H-RC architecture for soft-sensor design. The Res.1 reservoir
layer is composed of multiple decoupled reservoirs with different leak rates.
Shaded layers are trained sequentially: the first one is trained by PCA and the
second one by ridge regression. The Res.2 layer expands non-linearly on the
previous PCA layer. See text for a detailed description.

Among several existing hierarchical RC approaches in the
literature, we can cite, for instance: [40] for robotic arm control
using a hierarchical architecture which combines motor prim-
itives to achieve control of complex movements; [22] for si-
multaneous signal de-noising and online classification using a
3-layer recurrent architecture; [4] for self-organized (unsuper-
vised) learning of robot localization from low-dimensional noisy
infra-red sensory data; [35] for speech recognition using a deep
reservoir hierarchy. Each of them use different unsupervised
and/or supervised learning techniques and are well suited to dif-
ferent classes of applications.

As it will be verified below, the H-RC helps to model in-
frequent large transients (in amplitude and long in time) as well
as more common small signal oscillations simultaneously when
compared to a plain RC network. Besides, the PCA layer has a
role of improvement on the generalization performance of the
model.

4.2. Experimental setup

The input of the RC-based soft-sensor consists of 10 inputs
normalized to the interval [0, 1], corresponding to the 8 plat-
form variables from Table 1 plus the openings of the gas-lift
choke and production choke (unless otherwise stated). The tar-
get output variable y(t) corresponds to the PDG pressure sensor.
Although there are 5 months of available data (with a sampling
frequency of 1 sample per minute), in this section we focus
on the two most interesting months: August/2010 and Decem-
ber/2011. Previously, an RC model using all 5 months data
[2] has been built, but it does not take into account the slug-
ging flow phenomenon which happens in a smaller timescale.
Furthermore, some unexpected transients were also not inves-
tigated more closely. The following sections aim to close this
gap.

The results shown below use two types of feature selec-
tion: domain knowledge to combine input variables; or back-
wards variable removal (also called backward elimination) to
find the minimal set of variables which leads to the best gen-
eralization performance. The first method substitutes PT6 and
PT7 by their average (PT6+PT7)/2 as well as PT3 and PT4 by
(PT3+PT4)/2, justified by the fact that the SDV valve between
them is fully open, making both variables conveying the same
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Fig. 3: Estimation of bottom hole pressure with trained RC network. (a) The first plot shows the test input fed to the RC network (the production choke opening),
whereas the second plot shows the target and predicted output (the bottom hole pressure) as black and blue lines, respectively. The red vertical line marks the time
at which the reservoir runs in free-run mode, feeding back its output prediction. The bottom plot shows the three principal components of the reservoir states over
time, resulting from applying the PCA algorithm. (b) Closer look at the predicted downhole pressure for 10 minutes (the dashed gray line corresponds to the choke
input).

information. Another preprocessing corresponds to substitut-
ing PT5 by the pressure drop (PT5 − PT6) across the produc-
tion choke, since the downhole pressure is more sensitive to this
pressure drop than a single pressure measurement. Thus, after
this domain-based preprocessing, we get 8 input variables in to-
tal from the initially 10 available variables. On the other hand,
backward elimination starts with all 10 input variables for eval-
uating the RC architecture, and gradually removes the variable
which results in the least generalization error. From this, we
can find a minimum set of variables which better models the
signal during a particular period.

For learning slugging flow oscillations in August 2010 (first
task), the H-RC network is configured as such: Res.1 with 10
reservoirs of 50 units each; 3 units in PCA layer; 100 neurons

Table 1: Process variables

Tag Process variable Location Variables Set

PT1 Downhole pressure Seabed Output
TT1 Downhole temperature Seabed —
PT2 WCT pressure Seabed —
TT2 WCT temperature Seabed —
PT3 Pressure before SDV Platform Input
TT3 Temperature before SDV Platform Input
FT3 Instantaneous gas-lift flow rate Platform Input
PT4 Pressure after SDV Platform Input
PT5 Pressure after production choke Platform Input
PT6 Pressure before production choke Platform Input
TT6 Temperature before production choke Platform Input
PT7 Pressure before SDV Platform Input
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Fig. 4: Noise robustness results during testing (output prediction). (a) 2 large perturbations applied during 6 seconds to y[n], at minutes 35 and 48 (see indication by
gray ticks), are overcome by the trained network. The dashed gray line represents the corresponding input signal u[n]. (b) Random noise is applied to y[n] at each
timestep, sampled from a Gaussian distribution with zero mean and standard deviation σnoise. (c) The corresponding reservoir states for the same perturbations in
(a) whose application moments are marked with dashed vertical lines. The first two top plots show that the trained system is very robust to noise. (d) shows the
prediction error over different levels of noise (σnoise). The solid curve corresponds to results for the optimal reservoir from Fig. 3(a) and the dashed curve considers
different randomly generated reservoirs.

Fig. 6: Oil well scheme of a real-world well from Petrobras showing the location of sensors and chokes. FT3 is a flow rate sensor; PT# and TT# are pressure and
temperature sensors. SDV stands for ShutDown Valve.
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in Res.2 layer; output layer connected to PCA and Res.1 layers.
For learning both small oscillations and larger irregular tran-
sients simultaneously with data from December 2011 (second
task), the configuration is as follows: Res.1 with 10 reservoirs
of 50 units each; 10 units in PCA layer; two pools of 100 neu-
rons in Res.2 layer; output layer connected only to PCA layer.
The leak rate for the ten reservoirs in Res.1 layer is as follows:
α = (0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1) T (i.e., each element defines
the leak rate of a 50-units reservoir). We have arbitrarily set
υr

i = 0.06 and ρ(Wr
r) = 0.99 for both Res.1 and Res.2 lay-

ers. For the second task, Res.2 layer has one pool of units with
υr

i = 0.06 and α = 1, and another pool with υr
i = 0.1 and

α = 0.1.
The experiments are done using the H-RC network as well

as a plain RC network with one hidden layer of 500 neurons
for comparison. The latter is called 1-RC architecture, and its
parameters are set with the same values as for the H-RC, except
for the leak rate α = 0.5 for all neurons, and unless otherwise
stated. The setting of parameters is not very critical, and was
chosen to give best generalization performance. Note that a de-
crease in the input scaling counteracts an increase in the spec-
tral radius to avoid a possible loss of memory capacity and of
performance [37].

4.3. Experimental results

4.3.1. Slugging flow
In this section, the results on modeling the slugging flow

phenomenon for data from August/2010 are presented. The
training/test datasets are created including primarily the inter-
vals with oscillations while disregarding other irrelevant behav-
iors, totaling 21,600 samples (which corresponds to 15 days of
measurements), of which 75% are used for training. The se-
lection of the training samples is done as in [2], interleaving
training and test intervals randomly. Besides, the regulariza-
tion parameter is λ = 0.0001. Backward elimination is also
employed to select a subset β of the variables corresponding
to {PT7,TT6, PT5,G.C,TT3, P.C, PT3} as input to the H-RC
architecture. (see Fig. 7).

Table 2 shows the NRMSE and RMSE averaged over 30
runs for different experiments, where each run considers ran-
domly generated reservoir weights. The train and test error
rates are shown in the first two rows for the 1-RC architecture
and in the last two rows for the H-RC network. The asterisks
in 1-RC∗ and H-RC∗ mean that the subset β are used as in-
put variables, whereas their absence means the input variables
were domain-based preprocessed (see previous section). The
minimum test errors for 1-RC and H-RC are in marked in bold.
In both cases, H-RC shows a better generalization performance
than the 1-RC network. We also note that the backward variable
elimination helped only slightly to improve the test error.

The predicted bottom hole pressure using both 1-RC and H-
RC and the subset β as input variables is shown in Fig. 8 for two
particular oscillatory periods. The overall behavior is captured
by both networks, but a closer inspection reveals that the H-
RC architecture approximates better the downhole pressure and
also shows a more stable signal on average, i.e., less sensitive

* PT4 PT6 FT3 PT7 TT6 PT5 G.C TT3 P.C
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Fig. 7: Backwards Variable Removal for August 2010 and H-
RC architecture. The set of variables with minimum error is:
{PT7,TT6, PT5,G.C,TT3, P.C, PT3}.

to noise. For instance, just before hour 56 in time axis (marked
by a dashed rectangle as well as arrows), the blue line for 1-
RC varies quickly showing some undesired sensibility whereas
the blue line for H-RC has a smooth curve. Another example
of slight quick variation in the predicted signal can be viewed
between hours 52 and 54 for the 1-RC network.

Table 2: Error rates - August 2010

1-RC 1-RC∗ H-RC H-RC∗

NRMSE
Train 0.0881 0.0851 0.0764 0.0773
Test 0.168 0.164 0.155 0.150

RMSE
Train 0.00170 0.00164 0.00148 0.00149
Test 0.00355 0.00338 0.00327 0.00308

4.3.2. Transients
Uncommon transients in the downhole pressure can hap-

pen for instance when some control variables such as the pro-
duction choke or the gas-lift choke are altered. Closing these
chokes results in undesirable behavior for the downhole pres-
sure. One example is given in Fig. 10, where the unusual tran-
sient in the downhole pressure is concomitant to the closing of
the G.C (gas-lift choke). These behaviors are difficult to model
because they do not occur frequently, which provides few train-
ing data for building RC estimation models.

In this section, results consider the whole month in Decem-
ber 2011, totaling 43,200 samples, where the first 70% of the
samples were used for training and the rest for test. The param-
eter setting was done as described in Section 4.2, except for the
1-RC network, where the regularization parameter λ had to be
set higher (λ = 0.05), while the input scaling is set to υr

i = 0.2
and spectral radius is set to ρ(Wr

r) = 0.5 as in [2].
We can check the effect of the regularization parameter λ

in the test error rate by inspecting Fig. 9(a). Considering (ran-
domly chosen) fixed weight matrices in the reservoir layers, λ

8



(a) 1-RC

(b) H-RC

Fig. 8: Results for learning the slugging flow phenomenon in August 2010 with the 1-RC architecture (a) and the H-RC architecture (b). Black and blue lines
correspond to the target and predicted downhole pressure. See text for more details.

can be adjusted so that generalization of the model is achieved.
We can note that, for this particular initialization of the reser-
voir weights, the 1-RC network needs to be much more regular-
ized than H-RC, indicating that the H-RC may have an inherent
regularization due to the PCA layer in the hierarchical multi-
ple timescale structure. We can also verify that the best 1-RC
architecture for reservoirs with number of units in the interval
[50, 500] is the 500 unit reservoir (Fig. 9(b)). This is expected
as the training method used, Ridge Regression, regularizes the
model.

Note that, although a low error rate is achieved for 1-RC
when λ = 0.5, this does not mean that the network is always

modeling the signal behavior correctly. In Fig. 10, we can see
the target downhole pressure and the predicted output for 1-
RC and H-RC networks during two different moments. The
left plots show a large transient (in amplitude and long in time)
when compared to the smaller oscillations in the right plots. Al-
though 1-RC can do well in the left plot, the same network does
badly for the second oscillatory period. On the other hand, H-
RC handles both the large transient as well as the second signal
behavior, probably due to its multiple timescale processing in
Res.1 and Res.2 layers.

In Fig. 11 (a), we can see the error rate according to the
number of units in the PCA layer in H-RC. Each point in a
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Fig. 9: (a) Effect of the regularization parameter λ on the test error for H-RC and 1-RC networks for data from December 2011. (b) Test NRMSE by number of
reservoir units in 1-RC architecture. Error bars are set by the standard deviation for 10 randomly generated reservoirs.

line uses the same randomly generated weights (for Res.1 and
Res.2) so that different lines correspond to differently config-
ured reservoirs. Additionally, each point in a given line repre-
sents the test error after sequentially training the PCA and the
output layer. We can note that depending on which (random)
weights were chosen for the reservoir(s), the minimum test er-
ror varies according to the number of PCA units in the H-RC
architecture. This implies that the number of PCA units is a
parameter which may be aiding regularization of the model. In-
deed, the number of principal components used through PCA
has effects similar but not equal to ridge regression (for a de-
tailed discussion, see [18]).

Fig. 11 (b) shows the error rate based on the number of
PCA units from a different perspective. Now, the H-RC net-
work (solid line) is run 10 times for each PCA unit configura-
tion, where each run considers a different randomly generated
reservoir for Res.2 layer (Res.1 layer is kept fixed). The plotted
average value of the NRMSE shows a different result: on av-
erage, and given a particular fixed setting of the Res.1 weights,
networks with 7 and 8 PCA units produce lower error rates.
Note that this solid line is not a general behavior for the PCA
layer, as seen in Fig. 11 (a). For comparison, the removal of the
Res.2 layer from H-RC yields the results given by the gray line.
As Res.1 has fixed weights for each number of PCA units, the
results are deterministic (no error bars). These 2 curves show
clearly that Res.2 layer is important for the improved perfor-
mance. The dashed horizontal line represents the error rate for
the Res.1 layer (with the same weights) connected directly to
the output layer, with PCA and Res.2 layers removed.

5. Conclusion

This paper has presented a data-driven RC-based approach
for learning dynamical nonlinear behaviors present in processes
in the oil production system considering both simulation and
real-world data. While in the first part, a single network was
able to reproduce the dynamics of the model based only an uni-
dimensional input (the oil production choke) very satisfacto-

rily, and was shown to be robust to perturbations, in the second
part, a hierarchical multiple timescale architecture (H-RC) has
been proposed to deal with more complex nonlinear phenom-
ena present in the real-world oil well data. We can conclude that
the H-RC network was better suited to learn large unusual tran-
sients and more commonly occurring small oscillations (i.e.,
signals that differ by amplitude, temporal scale and probability
of occurrence) simultaneously, having a better test performance
and stability of prediction, when compared to a plain RC net-
work. The current data-driven approach supposes that a priori
knowledge is unavailable. Thus, it is an interesting candidate
for learning models from real-world noisy datasets and eventu-
ally speeding up simulation of nonlinear plants.

With respect to the first part of this paper (Section 3), fur-
ther research includes additional investigation of the capabili-
ties of RC for modeling more complex dynamical models, for
instance, using the OLGA simulator or samples from a real ver-
tical riser. Future work in the context of soft-sensors should
tackle the online learning of the readout layer with methods
such as Recursive Least Squares (RLS). This is useful for adapt-
ing the model in real time. Preliminary work has shown that it
is very difficult to learn a good model through RLS and sug-
gests that regularized online learning approaches are necessary
to achieve better generalization. Another research direction is
to create inverse models which take the (predicted) downhole
pressure as input and predict other sensor variables. Given the
existence of noisy or faulty sensors, this inverse model can then
be used to improve the overall (downhole pressure) prediction.
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Fig. 10: Results for learning a particular transient in December 2011 with 1-RC and H-RC architectures. (a) Black and blue lines correspond to the target and
predicted downhole pressure. The left plots show a transient while the right plots show an oscillatory period (b) Input variables for the corresponding intervals.

Appendix A. ESN training

Appendix A.1. Readout Training

Training the RC network means finding Wout in (2), that is,
the weights for readout output layer from Fig. 1. For that, the
reservoir is driven by an input sequence u(1), . . . ,u(ns) which
yields a sequence of extended reservoir states z(1), . . . , z(ns) us-
ing (1) (the initial state is x(0) = 0). The desired target out-
puts ŷ[n] are collected row-wise into a matrix Ŷ. The generated
extended states are collected row-wise into a matrix X of size
ns × (nr + ni + no + 1) using (1).

Then, the training of the output layer is done by using the
Ridge Regression method [9], also called Regularized Linear
Least Squares or Tikhonov regularization [36]:

W̃out = (X>X + λI)−1X>Ŷ (A.1)

where W̃out is the column-wise concatenation of Wo
r , and the

optional matrices Wo
i , Wo

o and ns denotes the total number of
training samples.

In the generation of X, a process called warm-up drop is
used to disregard a possible undesired initial transient in the
reservoir starting at x(0) = 0. This is achieved by dropping the
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Fig. 11: Analysis of PCA layer of H-RC network for data from December 2011.
(a) Test NRMSE for different number of units in PCA layer. For each line, a
different randomly generated reservoir was used. (b) The solid line shows the
mean test error when considering different number of PCA units and randomly
generated reservoirs (standard deviation given by error bars). The gray line
considers the H-RC network without the last reservoir layer (Res.2). The hor-
izontal line gives the error for the Res.1 connected directly to the output layer
(without PCA and Res.2 layers). See text for more details.

first nwd samples so that only the samples z[n], n = nwd, nwd +

1, ..., ns are collected into the matrix X.
The learning of the RC network is a fast process without

local minima. Once trained, the resulting RC-based system can
be used for real-time operation on moderate hardware since the
computations are very fast (only matrix multiplications of small
matrices).

Appendix A.2. Error measures
For regression tasks, the Root Mean Square Error (RMSE)

and Normalized Root Mean Square Error (NRMSE) are used as
performance measures and are defined as

RMSE =

√
〈(ŷ[n] − y[n])2〉, (A.2)

NRMSE =
RMSE
σŷ[n]

, (A.3)

where the 〈〉 denotes temporal averaging, and σŷ[n] is the stan-
dard deviation of desired output ŷ[n].

Appendix B. Vertical riser model

The model in [11] has three states which are the mass of
liquid in the riser (ml,r), the mass of gas flowing with liquid
phase (mg,r), and the mass of gas stuck in the bubbles (mg,eb).
These state variables are related by the following mass balance
equations:

ṁg,eb(t) = (1 − ε)wg,in(t) − wg(t) (B.1a)
ṁg,r(t) = εwg,in(t) + wg(t) − wg,out(t) (B.1b)
ṁl,r(t) = wl,in(t) − wl,out(t) (B.1c)

where wg,in and wg,out (resp. wl,in and wl,out) are the mass flow
rates of gas (resp. liquid) entering (in) and leaving (out) the
riser, wg(t) is the flow from the bubbles to the riser, and ε ∈
(0, 1) is the fraction of the gas that flows straight to the riser,
whereas (1 − ε) is the fraction that accumulates in the bubbles.

A virtual valve is introduced at the bottom point of the riser
to represent the obstruction to gas flow: the pressure in the gas
bubbles rises when this valve is closed; the valve opens when
the pressure in the gas bubbles exceeds the pressure at bottom
of the riser, allowing the gas in the bubbles to flow into the riser
that, in turn, reduces the bubble pressure until it gets below the
pressure at bottom of the riser which forces the valve to close.
When flowing from the bubbles into the riser, the gas expels
the liquid stored inside the riser and later causes a burst in oil
production.

A choke at the top of the riser enables the control of the
outlet flow. The control action consists of changing the opening
u ∈ [0, 1] of this choke. The model in [11] assumes a constant
flow of gas and liquid into the riser. Under this assumption, the
riser outflows are given by the choke equations that follow

wl,out ≈ Cc max(pr,top − ps, 0)u (B.2a)

wg,out ≈
mg,r

ml,r
wl,out (B.2b)

where pr,top is the pressure at the top of the riser, upstream of
the production choke, ps is the pressure at the separator, and Cc

is a positive choke constant.
The flow through the virtual valve is defined by

wg = Cg max(peb − pr,bh, 0) (B.3a)

where peb is the pressure of the gas in the elongated bubbles,
pr,bh is the pressure downstream the virtual choke (in the bottom
hole), and Cg is a positive choke constant.

The pressures that appear in the equations above are derived
from the ideal gas law and the gravitational pressure caused by
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the masses, being defined as follows:

peb =
RT

MVeb
mg,eb (B.4a)

pr,top =
RT

M
(
Vr −

ml,r

ρl

)mg,r (B.4b)

pr,bh = pr,top +
g, sin θ

A
ml,r (B.4c)

where Veb is the volume of the elongated bubbles which is as-
sumed constant, M is the gas molar mass, R is the constant of
the ideal gases, T is the temperature inside the riser, Vr is the
riser volume, ρl is the density of the liquid phase, g is the stan-
dard gravity constant, A is the cross section area of the riser,
and θ is the mean inclination of the riser.
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