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Abstract: System identification of highly nonlinear dynamical systems, important for reducing
time complexity in long simulations, is not trivial using more traditional methods such as
recurrent neural networks (RNNs) trained with back-propagation through time. The recently
introduced Reservoir Computing (RC) ∗ approach to training RNNs is a viable and powerful
alternative which renders fast training and high performance. In this work, a single Echo
State Network (ESN), a flavor of RC, is employed for system identification of a vertical riser
model which has stationary and oscillatory signal behaviors depending of the production choke
opening input variable. It is shown experimentally that these different behaviors are learned by
constraining the high-dimensional reservoir states to attractor subspaces in which the specific
behavior is represented. Further experiments show the stability of the identified system.
∗ The term reservoir used here is not related to reservoirs in oil and gas industry.
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1. INTRODUCTION

The simulation of nonlinear process models in optimiza-
tion tasks and (nonlinear) model predictive control (MPC)
usually requires a significant computational effort, espe-
cially when the model is composed of many inter-related
higher-order components. Sometimes, the nonlinear dy-
namic process equations are not known in advance, or only
the linearized version is modeled, which may not always
account for the right process nonlinear behavior. In these
cases, a set of process samples, if available, may be used to
identify the nonlinear dynamic system, for instance, using
artificial neural networks (Cessac, 2010).

The system identification task, which seeks to model
the process dynamics, can be based on a grey or black
box model. The former assumes a priori knowledge, for
instance, in the form of a model structure. Parameter
estimation is relatively easy if the model structure is
known, which is rarely the case. The latter, or black box
model, is more commonly used, and do not assume a priori
knowledge, using only the set of samples (input-output
mappings) to find the model dynamics.

The most commonly used approaches for nonlinear system
identification are Volterra series models (Rugh, 1981),
NARMAX models (Billings, 2013), and neural network
models (Nelles, 2001). Feedforward neural networks can
only model static input-output mappings. So, in order
to model the dynamic properties of nonlinear systems,
a tapped-delay line can be used with these networks
(or with other methods such as nonlinear regression),
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providing a finite window of past inputs. This type of
approach does not really model a dynamic system (i.e.,
there is no internal state). On the other hand, recurrent
neural networks (RNNs) do possesses an internal state,
and may be used as an universal approximation method
for dynamical systems. Training an RNN was traditionally
done using backpropagation through time (Werbos, 1990).
The drawbacks of this method are that the training is
an iterative and slow process without global convergence
guarantee, which can undergo bifurcations. It also requires
substantial expert practice to do it correctly.

A very efficient method for training RNNs was recently
coined as Reservoir Computing (RC) (Verstraeten et al.,
2007) to designate a research area sharing common char-
acteristics in learning RNNs: the network should be com-
posed of two main parts, a recurrent pool of neurons, with
randomly generated and fixed synaptic weights, called
reservoir, and a linear adaptive readout output layer which
transforms the reservoir states to the actual system’s out-
put. As only the output layer needs to be trained (usually
via linear regression methods), the training is simplified
and global convergence guaranteed. RC originated in the
works of Jaeger and Haas (2004) as Echo State Networks
(ESNs) when using analog neurons and of (Maass et al.,
2002) as Liquid State Machines (LSMs) when using spiking
neurons.

The reservoir has its weights chosen such that its dynamic
regime is usually situated at the edge of stability. This is
done in order to provide rich nonlinear transformations of
its input. In this way, it can be viewed as a dynamic nonlin-
ear kernel, projecting the input to a high-dimensional dy-
namic space, in which linear regression or classification can



be more easily performed. Numerous applications, relying
on the powerful temporal processing capabilities of RC,
have been derived: navigation and localization of mobile
robots in partially observable environments (Antonelo and
Schrauwen, 2014, 2012), periodic signal generation with
nanophotonic reservoir computing (Fiers et al., 2014), hi-
erarchical control of robotic arms (Waegeman et al., 2013),
speech recognition (Triefenbach et al., 2013), etc.

In this work, the powerful capabilities of RC are employed
for identifying a relatively complex vertical riser model
which possess qualitatively different dynamic behaviors
depending on the values of the input signal (actuator).
The input-output mapping to be modeled corresponds to
estimating the bottom hole pressure (output) based solely
on the production choke opening input variable.

The contribution of this paper is two-fold: first, as far
as the authors know, this is the first use of RC for
vertical riser modeling; secondly, by identifying a relatively
complex vertical riser model which has two main distinct
dynamic behaviors, we show that a single RC network can
simultaneously learn qualitatively distinct signal behaviors
based on the value of the input signal. These signals
correspond to hard-shaped and oscillatory curves, whose
nature differ significantly from each other. After training,
the RC network can generate stably both of these signals,
in accordance with the input-output relationship present
in the training samples and without feedback from the
original model measurements.

The idea of learning to generate different behaviors or
patterns can be compared to generation of robotic behav-
iors in Antonelo and Schrauwen (2014), in which different
behaviors are projected to different regions in the high-
dimensional space of the reservoir, by shifting the operat-
ing point of the reservoir with binary inputs. This makes
it possible to learn qualitatively different behaviors, as
well as to smoothly switch between them. In the current
work, instead of having a binary input shifting mechanism,
the modeling of different nonlinear dynamic patterns is a
direct implicit result of the relationship between the input-
output mapping obtained from the variables of the vertical
riser model. Particularly, the square-shaped changes in
the production choke opening variable induces one of the
following signal behaviors in the bottom hole pressure
variable: a shift to a new constant value or an oscillatory
behavior. Related recent research which deals with long
term memory mechanisms in RC for learning multiple
dynamic pattern generation can be found in Jaeger (2014).

This paper is organized as follows. Section 2 presents the
vertical riser model used for generating training samples.
The following section elaborates on the methods used
in this work, presenting a more detailed explanation of
Reservoir Computing, and its application to the particular
problem of identifying the vertical riser model. The exper-
imental results are given in Section 4 and the conclusion
in Section 5.

2. VERTICAL RISER MODEL

The model from Di Meglio et al. (2009) was selected for
representing the complex phenomena involved in multi-
phase flow dynamics observed in vertical risers. Besides, it

has also been used in other studies (Petit, 2011; Di Meglio
et al., 2010).

The model is based on first principles of fluid dynamics to
represent the oscillatory flow behavior in risers, typically
referred to as slugging flow. The oscillations arise from
the accumulation of gas in an elongated bubble that is
formed below the bottom of the riser, as a consequence of
an obstruction to the gas flow. The pressure in the bubble
builds up with incoming of gas until reaching a critical
pressure, a condition that causes discharge of gas to the
riser which causes a turbulence in the multiphase flow.

The model has three states which are the mass of liquid in
the riser (ml,r), the mass of gas flowing with liquid phase
(mg,r), and the mass of gas stuck in the bubble (mg,eb).
These state variables are related by the following equations
of mass balance:

ṁg,eb(t) = (1− ε)wg,in − wg(t) (1a)
ṁg,r(t) = εwg,in + wg(t)− wg,out(t) (1b)
ṁl,r(t) = wl,in − wl,out(t) (1c)

where wg,in and wg,out (resp. wl,in and wl,out) are the mass
flow rates of gas (resp. liquid) entering (in) and leaving
(out) the riser, wg(t) is the flow from the bubble to the
riser, and ε ∈ (0, 1) is the fraction of the gas that flows
straight to the riser, whereas (1 − ε) is the fraction that
accumulates in the bubble.

A virtual valve is introduced at the bottom point of the
riser to represent the obstruction to gas flow: the pressure
in the gas bubble rises when this valve is closed; the valve
opens when the pressure in the gas bubble exceeds the
pressure at bottom of the riser, allowing the gas of the
bubble to flow into the riser that, in turn, reduces the
bubble pressure until it gets below the pressure at bottom
of the riser which forces the valve to close. When flowing
from the bubble into the riser, the gas expels the liquid
stored inside the riser and later causes a burst in oil
production.

A choke at the top of the riser enables the control of the
outlet flow. The control action consists of the opening
u ∈ [0, 1] of this choke. The model of Di Meglio et al.
(2009) assumes a constant flow of gas and liquid into the
riser. Under this assumption, the riser outflows are given
by the choke equations that follow:

wl,out ≈ Ccmax(pr,top − ps, 0)u (2a)

wg,out ≈
mg,r

ml,r
wl,out (2b)

where pr,top is the pressure at the top of the riser, upstream
of the production choke, ps is the pressure at the separator,
and Cc is a positive choke constant.

The flow through the virtual valve is defined by:

wg = Cgmax(peb − pr,bh, 0) (3a)

where peb is the pressure of the gas in the elongated bubble,
pr,bh is the pressure downstream the virtual choke, and Cg
is a positive choke constant.

The pressures that appear in the equations above are
derived from the ideal gas law and the gravitational
pressure caused by the masses, being defined as follows:
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Fig. 1. Reservoir Computing (RC) network. The reservoir
is a non-linear dynamical system usually composed
of recurrent sigmoid units. Solid lines represent fixed,
randomly generated connections, while dashed lines
represent trainable or adaptive weights. The output
feedback from the output layer to the reservoir is
important for more complex tasks requiring, for in-
stance, self-sustaining oscillations.

peb =
RT

MVeb
mg,eb (4a)

pr,top =
RT

M
(
Vr − ml,r

ρl

)mg,r (4b)

pr,bh = pr,top +
g, sin θ

A
ml,r (4c)

where Veb is the volume of the elongated bubble which
is assumed constant, M is the gas molar mass, R is the
constant of the ideal gases, T is the temperature inside the
riser, Vr is the riser volume, ρl is the density of the liquid
phase, g is the standard gravity constant, A is the cross
section area of the riser, and θ is the the mean inclination
of the riser.

3. RESERVOIR COMPUTING

3.1 ESN model

An ESN is composed of a discrete hyperbolic-tangent
RNN, the reservoir, and of a linear readout output layer
which maps the reservoir states to the actual output. Let
ni, nr and no represent the number of input, reservoir
and output units, respectively, u[n] the ni-dimensional ex-
ternal input, x[n] the nr-dimensional reservoir activation
state, y[n] the no-dimensional output vector, at discrete
time n. Then the discrete time dynamics of the ESN is
given by the state update equation

x[n+ 1] =(1− α)x[n] + αf(Wr
rx[n] +Wr

iu[n]+

Wr
oy[n] +Wr

b), (5)
and by the output computed as:
y[n+ 1] = g (Wo

rx[n+ 1] +Wo
i u[n] +Wo

oy[n] +Wo
b)
(6)

= g
(
Wout (x[n+ 1],u[n],y[n], 1)

)
(7)

= g
(
Woutz[n+ 1]

)
, (8)

where: α is the leak rate (Jaeger et al., 2007; Schrauwen
et al., 2007); f(·) = tanh(·) is the hyperbolic tangent
activation function, commonly used for ESNs; g is a post-
processing activation function (in this paper, g is the

identity function); Wout is the column-wise concatenation
of Wo

r , Wo
i , Wo

o and Wo
b; and z[n + 1] = (x[n +

1],u[n],y[n], 1) is the extended reservoir state, i.e., the
concatenation of the state, the previous input and output
vectors and a bias term, respectively.

The matrices Wto
from represent the connection weights be-

tween the nodes of the complete network, where r, i, o, b de-
notes reservoir, input, output, and bias, respectively. All
weight matrices representing the connections to the reser-
voir, denoted as Wr

· , are initialized randomly (represented
by solid arrows in Figure 1), whereas all connections to the
output layer, denoted as Wo

· , are trained (represented by
dashed arrows in Figure 1).

Although output feedback given by the projection Wr
oy[n]

is not always used for ESNs, the learning task in this
paper requires this feedback connection for generating
fixed-point and oscillatory dynamics. We disregard the
connections Wr

b and Wo
o.

Next, the procedures for reservoir creation and dynamics
tuning are presented. The non-trainable connection matri-
cesWr

r,W
r
i ,W

r
o,W

r
b are usually generated from a random

distribution, such as a Gaussian distribution N(0, 1) or a
uniform discrete set {−1, 0, 1}. During this initialization,
two parameters are used:

• the connection fraction ctofrom corresponds to the per-
centage of nonzero weights in the respective connec-
tion matrix Wto

from.
• υtofrom corresponds to the scaling of the respective
connection matrix Wto

from.

While the connectivity between units in Wr
i and Wr

r is
not that important (Schrauwen et al., 2009) for analog
networks, the scaling of these matrices have a great influ-
ence on the reservoir dynamics (Verstraeten et al., 2007)
and must be tuned for achieving optimal performance.
Nevertheless, sparse connectivity is usually set for these
matrices, which, depending on the implementation, can
save memory space.

The reservoir connection matrix Wr
r is initialized to values

drawn from a Normal distribution. The dynamic regime of
the reservoir is set by rescaling the weights Wr

r such that
the resulting system is stable and exhibits rich dynamics.
As the ESN is usually nonlinear, this can be achieved
by studying a linearized version of the ESN around the
equilibrium point (Kuznetsov, 1998). Under this assump-
tion, a necessary condition to guarantee the Echo State
Property (ESP) (Jaeger, 2001) for ESNs, i.e., a reservoir
with fading memory 1 , is to rescale Wr

r such that the
maximal singular value of Wr

r is smaller than unity.

However, a better alternative is to rescale Wr
r such that

its spectral radius ρ(Wr
r) < 1 (Jaeger, 2001), in order to

get richer dynamics. Although it does not guarantee the
ESP, in practice it has been empirically observed that this
criterium works well and often produces analog sigmoid
ESNs with ESP for any input. For most applications,
the best performance is attained with a reservoir that

1 The Echo State Property states conditions for the ESN principle
to work. It can be understood as having a reservoir with fading
memory which asymptotically washes out any information from
initial conditions.



operates at the edge of stability, e.g., ρ(Wr
r) = 0.99.

Furthermore, spectral radius closer to unity as well as
larger input scaling makes the reservoir more non-linear,
which has a deterioration impact on the memory capacity
as side-effect (Verstraeten et al., 2010).

The scaling of these non-trainable weights is a parameter
which should be chosen according to the task at hand
empirically, analyzing the behavior of the reservoir state
over time, or by grid searching over parameter ranges.

Most temporal learning tasks require that the timescale
present in the reservoir match the timescales present in
the input signal as well as in the task space. This matching
can be done by the use of a leak rate (α ∈ (0, 1]) and/or by
resampling the input signal. For instance, low leak rates
yield reservoirs with more memory which can hold the
previous stimuli for longer time spans.

When more complex learning tasks are required, which
need unbounded-time memory and oscillatory dynamics,
then feedback connections (from the output layer to the
reservoir layer) are essential. The presence of feedback
connections allow the reservoir to enter in a free run mode
after training: the predicted output at timestep n will
be used as input to the reservoir at the next timestep.
This allows for the formation of attractors and oscillatory
dynamics. During the training stage, instead, teacher-
forcing is used: the desired output (target) from the
training samples is fed back to the reservoir. Furthermore,
stabilization of the system with output feedback is a
concern to be handled. That can be achieved by state noise
injection (Jaeger, 2002) or regularizing the readout output
(wyffels et al., 2008).

3.2 Readout Output Training

The training of RC networks takes place specifically for
the readout output layer from Fig. 1, that is, we need to
find Wout in (6). For that, the reservoir is driven by an
input sequence u(1), . . . ,u(ns) which yields a sequence of
extended reservoir states z(1), . . . , z(ns) using (5).

The desired target outputs ŷ[n] are collected row-wise into
a matrix Ŷ. The generated extended states are collected
row-wise into a matrix X of size ns × (nr + ni + no +1) if
output feedback is present. The training of the output layer
is done by using the Ridge Regression method (Bishop,
2006), also called Regularized Linear Least Squares or
Tikhonov regularization (Tychonoff and Arsenin, 1977):

W̃out = (X>X+ λI)−1X>Ŷ (9)

where W̃out is the column-wise concatenation of Wo
r ,

Wo
i , Wo

o (without the bias term Wo
b); ns denotes the

total number of training samples and the initial state is
x(0) = 0.

It is important to note that there is an initial transient
during the generation of reservoir states x[n] using (5)
due to the fading memory of the reservoir, which may be
undesired for the readout training. So, the usual procedure
to deal with this is to disregard the first nwd samples in
a process called warm-up drop so that only the samples
z[n], n = nwd, nwd + 1, ..., ns are collected into the matrix
X.

The learning of the RC network is a fast process without
local minima. Once trained, the resulting RC-based system
can be used for real-time operation on moderate hardware
since the computations are very fast (only matrix multi-
plications of small matrices).

Error measure For regression tasks, the Normalized
Root Mean Square Error (NRMSE) is used as a perfor-
mance measure and is defined as:

NRMSE =

√
〈(ŷ[n]− y[n])2〉

σ2
ŷ[n]

, (10)

where the numerator is the mean squared error of the
output y[n] and the denominator is the variance of desired
output ŷ[n].

3.3 System identification

The challenge of identifying the vertical riser model from
Di Meglio et al. (2009) is that it presents two distinct re-
gions: one stable, and another unstable area characterized
by oscillations (see Fig. 2). The behavior of the target
signal (the bottom hole pressure) is qualitatively distinct
in these two regions.

It has been shown that RC networks can model self-
generating attractor patterns such as the digit 8 in Carte-
sian coordinates (wyffels et al., 2008); and central pattern
generators with modulable amplitude, and shift (Wyffels
and Schrauwen, 2009; Li J, 2011). The feedback connec-
tions for this type of task are mandatory, as it requires a
long-term (non-fading) memory sufficient to sustain either
an oscillation or a constant value. In Fig. 2, the rela-
tionship between the changes in input (top plot) and the
dynamical outcome in the output (middle plot) can be
modeled directly by training a single RC network, as it
will be shown in the following section. Furthermore, the
simultaneous learning of oscillatory and stationary signals
with a single RC network is first reported here, as far as
the authors know.

4. EXPERIMENTAL RESULTS

The dataset used to train the RC network was generated
in Matlab by simulating the ordinary differential equations
(ODEs) of the vertical riser model described by Di Meglio
et al. (2009) (see Section 2). The dataset consists of a
desired single input - single output relationship (u[n], ŷ[n]),
where u[n] is the production choke opening (actuator),
while ŷ[n] corresponds to the bottom hole pressure vari-
able. The input u[n] can take values in (0, 1] and y[n] from
[3 ∗ 106, 17 ∗ 106] Pa approximately. We generated n =
24, 000 seconds (about six and a half hours) of simulation
using the ODE equations to collect the pairs (u[n], ŷ[n])
using a randomly created, squared-shaped, input signal
u[n].

For parameter selection, we used grid search with a 9-fold
random cross-validation over the following set of parame-
ters: leak rate α, input scaling υri , spectral radius ρ(Wr

r)
and the regularization parameter λ. Other parameters are
configured arbitrarily, such as the reservoir which has 400
neurons. It is known that as the reservoir gets bigger
in number of neuronal units, and if accompanied by a



properly regularized training procedure to avoid overfit-
ting, its performance gets better since its memory capacity
and processing power also increase. We found that a 400
neuron reservoir was enough to achieve good results, but
the task could be achieved with smaller reservoirs. The
remaining parameters are set according to Section 3.1,
that is, all weight matrices connecting to the reservoir
(Wr

i and Wr
o) are randomly generated from a uniform

distribution [−1, 1] (which means a connection fraction of
1) and scaled according to the values given by the input
scaling υri and output scaling υro (in our case, υri = υro).
This means that the magnitude of the influence of the
input production choke opening on the reservoir is the
same compared to the magnitude of the influence of the
output bottom hole pressure (note that both signals are
normalized). Wr

b is set to zero since the experiments have
shown that this extra bias non-linearity did not help to
improve performance. Training the network (computing
W̃out) is done applying equation (9). A test set of 2, 400
seconds (or 40 minutes) was used to evaluate the trained
network. The experiments were implemented in Python
using the Oger toolbox (Verstraeten et al., 2012).

The optimal parameter configuration given by the afore-
mentioned procedure for the results shown in the next
figures are as follows: α = 0.1, υri = 0.35, ρ(Wr

r) = 1 and
λ = 10−2.5. Figure 2 shows the estimations of the trained
RC network using a training dataset consisting of 20, 000
samples (one per second), and a test dataset composed of
4, 000 samples (or 66.6 minutes). The first plot shows the
input signal, i.e., the production choke opening used to
test the identified trained system. The target and actual
network outputs for the bottom hole pressure are shown in
the next plot in dashed and solid black lines, respectively.
The red vertical line defines the timestep at which the
reservoir starts running in free-run mode: using its own
output predictions y[n] as feedback signals. Previous to
that, the target signal ŷ[n] from the samples is teacher-
forced in order to set the internal reservoir state to an
appropriate state (i.e., ŷ[n] is used in (5) in place of y[n]).
It can be seen that after the red vertical line, the net-
work can adequately model the behavior of the identified
system: it was able to model fixed point and oscillatory
regions with only one network, two distinct behaviors
whose simultaneous modeling with a single neural network
is not a trivial task.

From these two plots, one can also note that these two
behaviors or, also, the different operating points which
y[n] can achieve depending on the input signal u[n] fed
to the network are, actually, learned through shifting the
operating point of the reservoir with the input signal
u[n]. This can be seen in the third plot of Fig. 2, which
shows the first three principal components from applying
Principal Component Analysis (PCA) on the reservoir
states. As u[n] changes value, the operating point of the
reservoir is taken, for instance, from a fixed point region
to an oscillatory region between minutes 10 and 15. The
distinction between these dynamic regions are learned
during the training phase. Apart from the role of u[n]
in the reservoir, y[n], by being fed back to the reservoir,
functions as reinforcing memory for maintaining either
the fixed point or the oscillatory behavior. Both are very
important for the final result.

The stability of the generated y[n] output signal is essential
for the identification task and can be achieved by using
noise injection during training (Jaeger, 2002) or finding
the optimal regularization parameter λ in ridge regression
(wyffels et al., 2008). To test the hypothesis of stability,
two experiments were devised using the test data: the
first experiment consisted of adding a single large and
increasing perturbation during 6 seconds, whereas the
second was done by adding Gaussian noise to y[n] at
each timestep. The results in Fig. 3 show in the first
plot the stability of the generated output in response
to two large perturbations during minutes 35 and 48.
The perturbations take place during a fixed point and
oscillatory behavior, and are handled effectively by the
RC network which is able to bring back the output to
the desired value or behavior. In particular, during the
oscillation, the perturbation affects the reservoir states
(Fig. 3(c)) such that the magnitude of the oscillation is
increased and not removed until the next change in the
input signal u[n]. Further experiments should also include
the improvement of this issue.

Fig. 3(b) shows the reservoir stability robustness to ran-
dom Gaussian noise on the output y[n], considering a
standard deviation of 10−2 for the normalized output
signal in [0, 1]. Other magnitude values of Gaussian noise
were tested and the results summarized in Fig. 3(d). The
performance deteriorates only from σnoise = 10−1 on.

5. CONCLUSION

In this paper, it was shown that RC networks are very
well suited for performing system identification of vertical
riser models having multiple different dynamic behaviors.
Depending on the interval in which the production choke
opening input variable was situated, either a stationary
signal or oscillatory behavior followed (in the bottom hole
pressure output variable), corresponding to stable and un-
stable regions for the vertical riser model, respectively. The
trained RC network is able to reproduce the dynamics of
the model, and were shown to be robust to perturbations.
Furthermore, the procedure described in this paper to
identify the system with the RC network is not limited to
the chosen riser model, but is almost directly applicable to
other dynamic models including gas-lift oil wells and other
riser models.

It is important to note that it is the shifting of the oper-
ating point of the reservoir resulting from the changes in
the input signal that allow the organization of subspaces
in the high-dimensional reservoir state space. These sub-
spaces formed in the training process are able to constrain
the dynamic behavior of the reservoir to the ones chosen
by the input-output relationship present in the training
samples. In this work, these nonlinear behaviors could be
classified as stationary or oscillatory signals, which are
simultaneously learned by a single RC network.

Further research includes the use of the identified system
for speeding up simulations in optimization and model pre-
dictive control tasks as well as the additional investigation
of the capabilities of RC for modeling more complex dy-
namic models based on samples from the OLGA simulator
and from a real vertical riser. The results from the RC
viewpoint could be transfered to the modeling of robotic



Fig. 2. Estimation of bottom hole pressure with trained RC network. The first plot shows the test input fed to the
RC network (the production choke opening), whereas the second plot shows the target and predicted output (the
bottom hole pressure) as dashed grey and solid black lines, respectively. The red vertical line marks the time at
which the reservoir runs in free-run mode, feeding back its output prediction. The bottom plot shows the three
principal components of the reservoir states over time, resulting from applying the PCA algorithm.

(a) two perturbations (b) σnoise = 10−2

(c) reservoir states during perturbation (d) Effect of noise on performance

Fig. 3. Noise robustness results during testing (output prediction). (a) 2 large perturbations applied during 6 seconds
to y[n], at minutes 35 and 48 (see indication by grey ticks), are overcome by the trained network. The dashed grey
line represents the corresponding input signal u[n]. (b) Random noise is applied to y[n] at each timestep, sampled
from a Gaussian distribution with zero mean and standard deviation σnoise. (c) The corresponding reservoir states
for the same perturbations in (a) whose application moments are marked with dashed vertical lines. The first two
top plots show that the trained system is very robust to noise. (d) shows the prediction error over different levels
of noise (σnoise). The solid curve corresponds to results for the optimal reservoir from Fig. 2 and the dashed curve
considers different randomly generated reservoirs.



behaviors, where the change to a stationary signal would
mean that the dynamical system commands the robot
to alter from a moving behavior to stay stably still, for
instance.
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