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Abstract— The road sign problem is tackled in this work with Reservoir Computing (RC) networks. These
networks are made of a fixed recurrent neural network where only a readout layer is trained. In the road sign
problem, an agent has to decide at some point in time which action to take given relevant information gathered
in the past. We show that RC can handle simple and complex T-maze tasks (which are a subdomain of the road
sign problem).
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1 Introduction

Most autonomous systems are merely reactive
systems. They act according to a predefined
sensory-motor mapping which is usually learned
and stored in artificial neural networks (bottom-
up approach). On the other hand, deliberative
systems are usually made of (symbolic) cognitive
layers which can deal with reasoning and planning
of robot trajectories, for example (the top-down
approach). The artificial intelligence community
has been raising its attention to deliberative sys-
tems which might be built using a bottom-up ap-
proach (Rylatt and Czarnecki, 2000; Ziemke and
Thieme, 2002). Actually, this new focus of AI is
very attractive, since it is known that biological
models can cope with very complex problems.

In this work, we follow that new approach
to artificial intelligence and tackle the road sign
problem. In this problem, an artificial agent
(robot) which is driving along a corridor receives
a temporary sign at some specified time which
must be remembered at a later moment in order
to take the correct decision (e.g., to turn right or
left) (Ulbricht, 1996). The road sign problem is
a delayed response task which is usually tackled
in the form of a T-maze task (Fig. 2). The T-
maze is an environment with a T-shape in which
a robot is positioned initially at the end of longest
arm (corridor). The goal for the robot is located
at the right arm if it has seen a sign (usually) at
the same side when driving along the main cor-
ridor. Accordingly, the goal is at the left part if
the sign was seen at the left side previously. The
difficulty of this task relies on the time gap exist-
ing between the sign and the decision at the T-
junction. The robot has to navigate up to the T-
junction and hold the information (the sign) gath-
ered in the past. This is a problem with a tem-
poral nature which can not be handled with tra-
ditional feedforward neural networks (Rylatt and
Czarnecki, 2000).

Several approaches to the road sign problem

have been proposed. In (Kim, 2004), evolution-
ary multi-objective optimization is used to evolve
finite state controllers with two objectives: behav-
ior performance and memory size. Noisy environ-
ments are considered in that work and consider-
able performance degradation is perceived. The
work in (Ziemke and Thieme, 2002) is based on
neuromodulation of synaptic weights in higher-
order Recurrent Neural Networks (RNNs) to solve
the T-maze task. This means that the sensory-
motor mapping (synapses) can be modified while
the robot is navigating as a mechanism of short-
term memory. This synaptic plasticity is evolved
by a standard genetic algorithm in their work.
However, for simple T-mazes the resulting con-
troller became purely reactive and followed the
left wall as soon as the light sign appeared at
the left. In (Linaker and Jacobsson, 2001), event
extraction is used to pre-process the input from
the robot in order to facilitate the training of
a recurrent neural network with backpropagation
through time. In that work, the outputs of the
network are three handcrafted behaviors (wall fol-
lowing behaviors) instead of more low-level mo-
tor output. The resulting controller works for ar-
bitrary delay periods between the stimulus and
the cue for response. Reinforcement learning
with Long Short-Term Memory (LSTM) is the
approach used in (Bakker, 2002) to solve non-
Markovian tasks with long-term dependencies be-
tween relevant events (such as the T-maze task).
A specific RNN architecture is used to approxi-
mate the value function of a reinforcement learn-
ing algorithm. The environment of the agent is
discrete (made up of connected squares) and it
can execute one out of 4 actions: move North,
East, South or West.

The current work uses Reservoir Comput-
ing (RC) on the road sign problem. RC has
been introduced in (Verstraeten et al., 2007) as
an unifying term for three other computing tech-
niques independently discovered which share sim-
ilar characteristics: Echo State Networks (Jaeger



and Haas, 2004), Liquid State Machines (Maass
et al., 2002), and BackPropagation DeCorrelation
(Steil, 2004). RC is a RNN with very efficient and
fast learning. This is because the architecture of
RC networks consists of a reservoir (the RNN it-
self) and a readout layer (Fig. 1). The reservoir
itself is left fixed (the weights are created ran-
domly at the beginning) whereas the readout layer
is trained by standard linear regression methods.

This work aims at showing that RC is very
well suited to solve problems with long-term tem-
poral dependencies between relevant events. It is
also a first experiment on using RC on the con-
text of adaptive behavior research (as far as we
know). The experimental setup is divided in two
phases. First, we use an autonomous robot sim-
ulator and an existent reactive robot controller
(Antonelo et al., 2006) in a T-maze environment
for automated generation of a dataset containing
samples of the robot sensory inputs and actuator.
The second phase consists of training a reservoir
in a Matlab environment using the previously gen-
erated data. We show that RC is able to solve the
T-maze task by learning the relantionship between
the sign and the correct turning at the T-junction.
Furthermore, experiments with simple and more
complex T-mazes are accomplished as well as an
analysis of memory requirements for these exper-
iments.

2 Methods

2.1 Reservoir Computing

The current work uses the Echo State Network
approach as a learning system for the road sign
problem. The random, recurrent neural network
(or reservoir) is composed of sigmoidal neurons
and is modeled by the following state update equa-
tion:

x(t + 1) = f(Winu(t) + Wx(t)), (1)

where: Win is the connection matrix from input
to reservoir; W is the weight matrix for the recur-
rent connections between internal nodes; f is the
hyperbolic tangent function; and u(t) is the input
vector at time t. The initial state is x(0) = 0.

The output y(t) of the network at time t is
given by

y(t) = Wout

[

x(t)
1

]

, (2)

where Wout is the readout matrix.
The readout matrix is created by solving (in

the mean square sense) the following equation:

MWout = Ŷ, (3)

where M is the matrix containing the internal
states x(n) for n = 1, 2, . . . , ns (which are col-
lected after stimulating the network with input

Figure 1: Reservoir Computing network (left) and
Robot model (right).

data); Ŷ contains the corresponding teacher out-
puts; ns denotes the total number of time samples.

2.2 Robot model

We use an autonomous robot navigation simulator
(SINAR) and a particular reactive robot controller
for automated generation of the dataset (of sen-
sory inputs and actuator) which is used to train
a RC neural network in the T-maze task. The
robot simulator and controller are the same as
used in (Antonelo et al., 2006). Several environ-
ments with a T-maze shape are created with this
simulator for the experiments in the following sec-
tions (see Fig. 2). Next the environment and robot
controller are described briefly.

The environment of the robot is composed of
repulsive and attractive objects. Each object has a
particular color, denoting its respective class. Ob-
stacles are considered repulsive objects while tar-
gets are attractive objects (Antonelo et al., 2006).
For the T-maze experiments, the light sign is mod-
eled by an object with a distinct color (see Fig. 2).
The robot model is shown in Fig. 1. The robot in-
teracts with the environment by distance, color
and contact sensors; and by one actuator that
controls the adjustment on the movement direc-
tion. Sensor positions are distributed homoge-
nously over the front of the robot (from -90◦ to
+90◦). Each position holds three sensors (for dis-
tance, color and contact perception) (Antonelo
et al., 2006). In this work, the robot model has
17 sensor positions, as in (Antonelo et al., 2007).
The velocity of the robot is constant. At each
iteration the robot is able to execute a direction
adjustment to the left or to the right in the range
[0, 15] degrees.

The robot controller (Antonelo et al., 2006)
can produce appropriate trajectories for the T-
mazes by placing specific attractive objects in the
environment. So, the reactive controller does not
solve the T-maze task but is only used for gen-
erating data (the generation of these trajectories
are explained in the following section). The data
(from distance and color sensors, and actuator)
collected from the robot simulator are saved in
files which in turn are used to train and test reser-
voir networks in a Matlab environment using the



RCT Toolbox1 (Verstraeten et al., 2007). Note
that the RC neural network is not integrated yet
with the simulator (the robot controller is used
only to generate trajectories for the training of
RC networks).

3 Experiments

3.1 Introduction

In this work, we use the Reservoir Computing
paradigm to enable a system to learn long-term
temporal dependencies in the road sign problem.

In (Rylatt and Czarnecki, 2000), a robot is
manually moved (using cursor keys) to generate
samples of the robot’s sensory inputs and cor-
responding motor responses. These samples are
used to train an Elman recurrent neural network.
In the current work, we automate the generation
of the training dataset by letting a reactive con-
troller (see previous section) to drive the robot in
the environment. The robot knows which side to
turn at the T-junction due to the existence of at-
tractive objects (see Fig. 2) which are placed in
the environment depending on the current goal.
They attract the robot to the correct goal. Natu-
rally the sensory perceptions on attractive objects
are not included in the dataset used to train the
RC network.

There are two sets of experiments: simple T-
maze and complex T-maze experiments. In the
first set, usual T-mazes of different sizes are used
(see Fig. 2). This is explained in the next sec-
tion. The following set includes experiments with
complex T-mazes which have two signs visible at
a time (see Fig. 5), being described in Section 3.3.

The reservoir configuration is as follows for all
experiments (except where changes are explicitly
stated). The inputs to the network are distance
and color sensors suming up 34 inputs which can
range from 0 to 1. The sensors’ range is limited,
so they can saturate (see Fig. 2). The reservoir is
composed of 400 nodes, scaled to a spectral radius
of |λmax| = 0.9 (Jaeger, 2001). The readout layer
has 1 output unit which corresponds to the robot
actuator (current direction adjustment). The in-
put nodes are connected to reservoir nodes by a
fraction of 0.3 and are set to -0.2 or 0.2 with equal
probabilities.

The original dataset (collected from the simu-
lator) is downsampled by a factor of 100, which is
equivalent to slowing down the reservoir timescale
(Jaeger et al., 2007; Antonelo et al., 2007) (so, 1
time step in the reservoir corresponds to 100 time
steps in the simulator). This is because the robot
has a relatively constant low velocity, taking about
1300 time steps to go from the start position until

1This is an open-source Matlab toolbox for
Reservoir Computing which is freely available at
http://www.elis.ugent.be/rct

the goal for example in environment E1 (Fig. 2).
The same resampling factor is used for every ex-
periment in this paper unless otherwise stated (al-
though a greater resampling can yield better re-
sults if the delay period is too large between the
light sign and the cue at the T-junction).

The dataset (sensory inputs and motor out-
put) collected from the simulator are divided in
three parts, where two parts are used for training
and the other one for testing. The current stage of
the work does not include the test of the RC net-
work as a controller embedded in the simulator. It
is only tested on pre-recorded sensory inputs from
the simulator (not real-time). The performance
measure is based on the normalized mean square
error (NMSE) calculation on a 3-fold cross vali-
dation with ridge regression as the learning algo-
rithm. Distance sensors data are 20% noisy while
color sensors data are 10% noisy (which are high
noise rates when compared to (Rylatt and Czar-
necki, 2000) who consider noise-free data). The
noise is generated from a Gaussian distribution.

3.2 Simple T-mazes

This section presents three experiments on the
most common form of the road sign problem: the
T-maze task (see Fig. 2). The T-maze environ-
ments were built considering different lengths for
the main corridor in order to test the memory ca-
pacity of a reservoir neural network. The corridor
in environments E2 and E3, shown in Fig. 2, are
two and three times bigger than in E1, respec-
tively.

It is important to note that the current ap-
proach does not force the robot to go until the
T-junction as in (Kim, 2004). Therefore, in our
case the robot might hit the wall before reaching
the T-junction if driven by the reservoir network.
This is a more difficult problem because the reser-
voir network also has to learn to drive forward un-
til the T-junction and only then turn right or left.
Additionaly, this work is not based on event ex-
traction which works on a higher abstraction level
as in (Linaker and Jacobsson, 2001) but instead
the reservoir receives the continuous raw sensor
data.

Results are summarized in Table 1. Each ex-
periment has a dataset with 60 examples (each
example is built with sensor and actuator samples
from a robot going from the start position to the
goal position). Also each experiment is evaluated
30 times (runs) with different stochastically gener-
ated reservoirs and the results (error) are averaged
over these 30 runs.

Remember that the output (readout) of the
reservoir is the actuator of the robot (for direc-
tion adjustment) . To evaluate whether the pre-
dicted trajectory is correct (i.e. whether the reser-
voir is able to drive the robot through the T-maze



Figure 2: Simple T-mazes of distinct sizes. The
robot only sees 1 sign at a time. A sign at the left
(right) indicates that the goal is at the left arm, in
G1 (right arm, in G2). Crosses mark the positions
of attractive objects which are visible to the robot
controller (which automates the generation of the
samples) but not for the RC network.

and solve the task correctly), we plot the real tra-
jectory and the predicted trajectory by moving
two points in X and Y coordinates as they were
driven by the desired and predicted actuators, re-
spectively. Fig. 3 shows three plots for T-mazes
E1, E2 and E3. They show the real trajectory of
the robot (each point given by an asterisk) and
the trajectory formed by reading the reservoir re-
sponses (each point represented by circles). Note
that the predicted trajectory was built by stimu-
lating the reservoir with test data not contained
in the training data.

It is easily seen that as the size of the cor-
ridor increases the difficulty for getting a 100%
effective reservoir is also higher. For T-mazes E1
and E2, the test error is very low (Table 1). It is
also accomplished the evaluation of the reservoir
performance by visual inspection (i.e., cheking the
real and predicted trajectories). This is done by
training a reservoir network on a dataset with 40
examples, and counting the number of correct and
bad predicted trajectories (which correspond to
Paths A and Paths B in Table 1, respectively) for
the training and test (whose size is 20 examples)
datasets. The predictions that are not in Paths

A neither in Paths B represent an intermediate
class for which we are not sure whether the reser-
voir would drive a simulated robot in real time to
the goal.

The trajectories in Fig. 3 were randomly cho-
sen between the set of correct trajectories (Paths
A). The set of bad predictions (Paths B) have the
worst trajectories such that the reservoir would
likely not drive the robot to the goal position if
the reservoir network was integrated in the sim-
ulator in real time. For instance, in Fig. 6 the
trajectory built from the reservoir output for T-
maze E2 deviates significantly from the desired
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Figure 3: Plots showing reasonable robot path
predictions for the simple T-maze experiments.
Each point of the desired trajectory is marked by
an asterisk while circles represent points of the
predicted robot path. From left to right are the
plots for T-mazes E1, E2 and E3 respectively.

robot trajectory. Actually, we do not know how
this bad prediction would work with data in real
time from the simulator. This is because when the
predicted robot trajectory first deviates after the
first 4 time steps, the reservoir still thinks that
the robot is going straight ahead once the data
that feed the network does not reflects the motor
outputs from the reservoir. This will be solved by
integrating a RC network into the robot simula-
tor in order to know the real outcome with real-
time sensory input (which is left as future work).
Nonetheless, the current results clearly show that
RC networks can solve the T-maze task.

We calculated the time gap in Fig. 3 between
the first time step in which the robot looses the
sight of the sign and the first time step for the
decision at the T-junction. These values are ap-
proximately 6, 10 and 19 time steps for T-mazes
E1, E2 and E3, respectively. In (Rylatt and Czar-
necki, 2000), the road sign problem was solved by
employing Elman networks with BPTT with re-
liable results up to around 6 time steps for the
time gap between stimulus and decision (consid-
ering noise-free data). In our approach, we get
very effective RC networks even considering time
gaps of circa 10 time steps and very noisy data.

In Fig. 4, it is possible to analyse the effect
of the reservoir size on the performance on the T-
maze tasks. For T-maze E1, a reservoir with 40
nodes is already enough to produce good results
(without any bad trajectories). It is also possi-
ble to note that a reservoir with 400 nodes offers
more memory and increases the performance for
T-mazes E2 and E3 (as these environments require
the system to hold a history of the received stimuli
for longer delays). As a general rule, it is known
that as the size of the reservoir increases the mem-
ory capacity is also greater (Jaeger, 2001; Ver-
straeten et al., 2007). On the other hand, chang-
ing the downsampling factor to 200 (slowing down
the reservoir timescale even more) for T-maze E3,
we improve greatly the performance to a error rate
(NMSE) of 0.0172 and 0.0419 for training and test
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Figure 4: Normalized mean square error on test
data x Reservoir size, for T-mazes E1, E2 and E3.
A 3-fold cross-validation is executed 10 times and
results are the average.

errors, respectively, without any bad trajectories.

3.3 Complex T-mazes

Here we consider T-maze tasks with two visible
signs at a time. In Fig. 5, it is possible to see the
enviroments used in the experiments. Environ-
ment E4 is similar to E2 except that 4 different
sign combinations (of 2) exist. The goal is G2
when either both signs at the right are visible or
the lower right and upper left signs are both visi-
ble. Accordingly, the goal is G1 when either both
signs at the left are visible or the lower left and
upper right signs are both visible. Environment
E5 is a multiple T-maze which has 4 branches.
Each single sign combination (of 2) corresponds
to a goal: Lower Left and Upper Left (G1), Lower
Left and Upper Right (G3), Lower Right and Up-
per Right (G2), Lower Right and Upper Left (G4).
The length of the main corridors of E4 and E5 are
equal to the length of the corridor of E2.

Both training and test errors are considerably
higher in E4 than in E2, despite the same size of
the main corridor. It turns out that for the same

Figure 5: Complex T-mazes. Note that all 4 signs
are shown in the figure for visualization purposes
(the robot only sees two signs). Depending on
the current goal, attractive objects (marked by
crosses) are placed in the environment for auto-
mated generation of the training dataset (natu-
rally these objects are not seen by the RC net-
work).
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Figure 6: Correct and bad predicted trajectories.
Each point of the desired trajectory is marked by
an asterisk while circles represent points of the
predicted robot path. The first two plots are good
predictions whereas the last two are bad ones.
From left to right, the environments shown are
E4, E5, E2, E5.

Table 1: Summarized results. Results in parenthe-
sis are related to performance on test data. Paths
A are the number of correct predicted trajectories
(40 and 20 trajectories are the maximum values
for the training and test sets respectively). Paths
B are the number of bad predictions.

Env. Error(NMSE) Paths A Paths B

E1 0.0191(0.0341) 40(20) 0(0)
E2 0.0559(0.1080) 40(19) 0(0)
E3 0.2122(0.3346) 20(8) 3(4)
E4 0.1952(0.3185) 27(12) 0(2)
E5 0.2072(0.2863) 19(10) 6(5)

reservoir configuration the difficulty for establish-
ing a correct path until the goal is increased when
more than one sign are associated with the same
goal. Furthermore, in E4 the reservoir has to dis-
criminate between different combinations of signs
that are temporally structured. For instance, the
Upper Left sign can be associated with either G1
or G2, depending on the side of the lower sign
which first appears. This characteristic may be
the main reason for the increased error compared
to the experiments in E2. Nevertheless, we still
get around 27 (12) correct trajectories for the
training (test) data in T-maze E4 out of 40 (20)
trajectories. The left plot in Fig. 6 shows a cor-
rect predicted trajectory for T-maze E4. The
performance of RC networks for T-maze E4 and
E5 are comparable in terms of the NMSE, but the
number of bad predicted trajectories are higher
for T-maze E5, as expected. In E5, the RC net-
work must discriminate distinct sign combinations
as well as to associate each of them to a goal (out
of 4). The second plot in Fig. 6 shows a correct
prediction for T-maze E5 whereas the last plot in
the same figure represents a predicted trajectory
with deviates considerably from the desired one
for the same T-maze.

4 Conclusion

This work tackles the road sign problem in the
form of a T-maze navigation task using generic



recurrent neural networks which are processed by
a single linear readout layer. We show that RC
networks are well suited to deal with long-term
temporal dependencies between relevant events.
The network holds the information gathered in
the past (e.g., the light sign) because of its recur-
rent connections, being able to produce adequate
outputs (e.g., turn right or left) after some delay
period. Only a readout layer in the RC network
is trained by a fast linear regression algorithm,
avoiding the convergence problems of BPTT and
the need for unfolding the network in time as in
(Rylatt and Czarnecki, 2000). Experiments con-
sider simple T-maze tasks and even more complex
T-mazes with different sign combinations.

The next stage of this work is to embed the
RC network in the simulator. In this way, we can
evaluate the network driving the robot in real-
time. Another interesting point is to test the gen-
eralization capability of RC networks for arbitrary
corridor lengths.

As a general and efficient learning system for
temporal problems, RC networks can be combined
with reinforcement learning, giving rise to several
potential applications (mainly on control). There-
fore, an agent could learn by reinforcement to as-
sociate a sign perceived in the past with actions
that lead to a future reward. This is done in
(Bakker, 2002) using LSTM with reinforcement
learning (although their agent’s world is discrete).

From the RC point of view, it is possible to
study further the impact of the reservoir timescale
on the T-maze task. By slowing down the reser-
voir timescale, the RC network can cope with
longer delay periods between the relevant events.
Additionaly, by creating an unsupervised method
which adapts the reservoir timescale for different
sizes of the T-maze, we can obtain a system that
works for arbitrary delay periods between the sign
and the turning decision at the T-junction.
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